
TSMF: Network Latency Estimation using Matrix
Factorization and Time Series Forecasting

Fotis Savva
School of Computer Science

University of Glasgow
Glasgow, UK

f.savva.1@research.gla.ac.uk

Christos Anagnostopoulos
School of Computer Science

University of Glasgow
Glasgow, UK

christos.anagnostopoulos@glasgow.ac.uk

Dimitrios Pezaros
School of Computer Science

University of Glasgow
Glasgow, UK

dimitrios.pezaros@glasgow.ac.uk

Abstract—The ability to accurately estimate end-to-end net-
work latencies is extremely important for many services, from
overlay network formation to Edge computing and 5G. Research
in Network Coordinate Systems (NCS) has over the years focused
on providing such estimates while conserving network resources
by avoiding excessive probing. However, Internet latencies are
inherently unstable and estimates produced by existing NCS’s
are shown to quickly become obsolete.

In this paper, we devise TSMF, a novel NCS method based on
an ensemble of Time-Series Forecasting and Matrix Factorization
(MF). Fusing the two approaches results in a model that takes
advantage of the low-rank structure of end-to-end latencies
and temporal correlations with past measurements. In addition,
TSMF can forecast future end-to-end latencies which has been
impossible using existing NCS approaches.

Our results demonstrate that TSMF outperforms Euclidean
and MF-based NCS’s with up to 6× less relative error in
predicting end-to-end latencies. We also demonstrate the ac-
curacy of TSMF in forecasting future end-to-end latencies,
and its consequent suitability for services such as web-service
recommendation.

I. INTRODUCTION

Knowing the evolution of latencies of end-to-end Internet
paths is important for improving Quality-of-Service (QoS) in
many types of networks, such as peer-to-peer and content
delivery overlays. More recently, we see latency being used in
identifying inter-node distances in fog/edge networks [7] and
in the context of web-service recommendation [17]. End-to-
end latencies are usually identified by measuring the one-way
delay or round-trip time (RTT) between hosts A and B using
active probing or through passively monitoring communica-
tion between hosts. However, for large number of paths, we
risk overwhelming the network by having each host actively
probing each other or risk never finding out about the latency
between hosts that have never communicated before.

To remedy this, a number of approaches have emerged that
can estimate latencies between a random pair of hosts without
explicitly probing all paths. These methods exploit a limited
set of latency measurements from prior communication of
random hosts to construct models that can infer the latency
of all other hosts not in this set. Hence, given measurements
dij ,∀(i, j) ∈ Θ, where dij is the latency between hosts i and
j, and Θ is the set of pairs of nodes that have communicated
previously, the model can infer dij ,∀(i, j) /∈ Θ. The two

main categories of such methods are Euclidean Embedding
methods [3], [12] and, more recently, Matrix Factorization
(MF) [2], [8], [9], [11]. We commonly refer to these techniques
as Network-Coordinate Systems (NCS).

Prior work on NCS’s, largely ignores the temporal correla-
tions that successive latency measurements might have. Hence,
any prior measurements dt−H,ij , where t is the latest measure-
ment and H ∈ [1, T] for a finite time horizon T > 0 indicates
prior time-step/measurements, are not generally exploited for
predicting latencies. Instead, both the Euclidean Embedding
and MF approaches utilize only the latest measurements
dt,ij ,∀(i, j) ∈ Θ or an aggregate statistic like

∑T
t=0 dt,ij
T . This

could lead to wildly inaccurate estimates as latencies can vary
significantly in the future. Incorporating prior measurements
into a model could help enhance estimation accuracy. Both
of these facts are demonstrated in Figure 1. Figure 1(left)
measures the Coefficient-of-Variation (CoV) for measurements
(varying over time) across random pair of hosts using the
Seattle data set [9] and shows how much the measurements
vary with respect to the mean. We compute CoVs of time-
varying measurements dt,ij for each pair of hosts such that

µij = 1
T

∑
t dt,ij and σij =

√∑
t(dt,ij−µij)2

T . We then plot
the Cumulative Distribution Function (CDF) of the CoVs
which demonstrates that measurements vary significantly over
time and a produced estimate at time t could be inaccu-
rate at time t + 1. Figure 1(right) shows how many prior
measurements (denoted as time lags) act as good predictors
(i.e., have strong correlation) with a measurement at time t.
These are extracted using the autocorrelation function for each
pair of hosts. It is evident that almost 80% of end-to-end
latency estimates could benefit by, at least, the last 10 prior
measurements.

In this paper, we propose TSMF, an ensemble methodology
based on Time Series forecasting and Matrix Factorization
to achieve better latency estimation. We exploit the low-
rank structure of a matrix D that holds the limited number
of measurements from set Θ and the temporal correlations
that measurements have, to fuse together a model that is an
ensemble of MF based on Stochastic Gradient Descent (SGD)
[1] and Time-series forecasting based on Simple Exponential
Smoothing (SES) [4]. The primary purpose of TSMF is to

0 5 10

CoV

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

0 10 20 30 40 50

Lags

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
Fig. 1. (Left) CDF of CoV indicating that measurements fluctuate with respect
to time; (Right) Number of prior measurements that can act as predictors

estimate any missing latencies dij /∈ Θ. However, it can
also forecast any future latencies dt+H,ij as it utilizes SES.
In addition, we leverage the associated uncertainty of TSMF
to construct a heuristic that proposes nodes (i, j) that should
actively probe each other to identify their end-to-end latency.
By forcing nodes to communicate, more recent measurements
become available making TSMF more accurate.

The main contributions of this work are:
• A novel model (TSMF) for network latency estimation

based on time-series forecasting and matrix factorization.
• A method to identify the subset of nodes which should

communicate to improve overall latency estimation.
• a comprehensive performance evaluation and compara-

tive assessment of TSMF against state-of-the-art NCS
approaches.

Our results demonstrate that TSMF has up to 6× less
relative error in predicting end-to-end latencies, compared to
standard approaches based on MF and Euclidean Embedding.
In addition, we showcase TSMF’s ability to perform forecast-
ing and web-service recommendation along with exhibiting
how to enhance accuracy by selective probing.

The rest of the paper is organized as follows: Section II
presents an overview of current approaches. In Section III we
give formal definitions for the task at hand as well as for-
mulating the basic methodology behind MF. We then present
TSMF in Section IV and how its use can inform decisions
for selective probing at Section V. Section VI presents the
evaluation of TSMF over different tasks.

II. BACKGROUND

In Euclidean Embedding approaches such as Vivaldi [3],
each host i is modeled as a set of coordinates in euclidean
space such that xi ∈ Rd. The latency between a pair of hosts
is then estimated by d̂ij = ‖xi − xj‖2, where dij ≈ d̂ij and
‖x‖2 is the Euclidean (L2) norm of vector x. Each available
measurement dij ∈ Θ is used in a learning process to adjust
the coordinates of every host proportionally with respect to the
error e = dij − d̂ij . However, a big drawback of Euclidean
Embedding methods, is the widespread Triangle Inequality
Violations (TIVs) in network latencies [14]. A property of
metric spaces such as the one described above is the Triangle
Inequality which states that dij ≤ dik + djk. However, this

property can be violated in a number of settings where routing
might be sub-optimal or follows diverse paths because of
policy configurations [14], hence the large number of TIVs.
This leads to inaccurate estimations and the suitability of such
systems has been questioned in a number of surveys [6].

Alternative approaches based on Matrix Factorization (MF)
[8], [9], [16], [17] do not suffer from this shortcoming. All
available measurements from a set Θ are placed in a matrix
D ∈ Rn×p, where n is the number of hosts and p is the number
of services. In a context where only the latencies amongst a
fixed set of hosts is needed, we usually have p = n, so D is a
square matrix. In the remainder and without loss of generality
we assume p = n. Then, for each Dij = dij ,∀(ij) ∈ Θ, while
we notate Dij = missing,∀(i, j) /∈ Θ. In cases where dij is
the RTT between hosts i and j then D is also symmetric with
dij = dji. MF methods, operate under the assumption that
matrix D is low-rank so they learn a decomposition of the
matrix D = XY, where X ∈ Rn×r and Y ∈ Rr×n, where r
is assumed to be the rank of matrix D. The matrices X,Y are
learned from the available set of measurements. To estimate
latencies between hosts i and j we can assign two vectors to
each host (xi,y

i) and (xj ,y
j) where the subscript i denotes

the ith row and the superscript i denotes the ith column of a
matrix. The estimation for measurement dij is then produced
by d̂ij = xiy

j .

III. PROBLEM FORMULATION & DEFINITIONS

Let D ∈ Rn×n be a square matrix with

Dij =

{
dij if (i, j) ∈ Θ

missing if (i, j) /∈ Θ

where dij ∈ R indicates that a measurement of RTT delay
exists between hosts i and j. The general objective of any
NCS is then to find D̂∗ such that it approximates D

D̂∗ = arg min
D̂
‖D− D̂‖F (1)

where || · ||F is the Frobenius Norm. We define (1) as the
general loss function. Due to a number of missing entries
in D, we approximate the general loss function as the squared-
loss over all available measurements:

min
D̂

∑
i,j∈Θ

(Dij − D̂ij)
2. (2)

By exploiting the low-rank nature of D, MF methods approx-
imate D by a decomposition such that D ≈ D̂ and D̂ = XY.
Where X ∈ Rn×r and Y ∈ Rr×n and r is the rank(D).

A standard MF approach of estimating matrices X and Y
is by optimizing a variant of (2) using SGD. Specifically,
following this approach we have to minimize:

J(X,Y) =
∑
i,j∈Θ

(Dij − xiy
j)2 + λ‖X‖F + λ‖Y‖F , (3)

where the last two terms are regularization terms with λ > 0.
As MF approaches suffer from the well-known overfitting
problem in Machine Learning (ML), we have to heavily

𝐷𝑡−1,11 … … 𝐷𝑡−1,𝑖𝑗

𝐷11 … ... 𝐷𝑖𝑗

⋮ ⋱ ? ⋮

⋮ ? ⋱ ⋮

𝐷1𝑛 ? ? 𝐷𝑛𝑛

𝑫𝑡−𝐻

𝑫𝑡

Fig. 2. Matrices Dt, holding host pairs latency measurements, at different
time-steps t.

regularize to avoid this from happening. Overfitting in this case
would cause poor accuracy in predicting the missing entries
in D. Using SGD, X,Y are updated as:

∆xi = −γ∇xJ(X,Y), (4)
∆yj = −γ∇yJ(X,Y), (5)

with learning rate γ ∈ (0, 1). The update rules at (4) and
(5) are applied iteratively for random available measurements
in the set Θ for a number of iterations until the matrices
have reached a convergence threshold. Hence, the gradient is
approximated by individual measurements:

∇xiJ(X,Y) = (Dij − xiy
j)yj + λxi, (6)

∇yjJ(X,Y) = (Dij − xiy
j)xi + λyj . (7)

Once the matrices X,Y have been estimated, the missing
entries can be predicted using Dij ≈ xiy

j , ∀(i, j) /∈ Θ.
Although this approach is powerful, it lacks the opportunity
of leveraging any prior communication that nodes have. It
is usually the case that D is not the only matrix available
but, instead we also have previously incomplete matrices
Dt−H . Thus, in the following section we introduce TSMF
that exploits this fact.

IV. THE TSMF METHODOLOGY

A. Forecasting Missing Latency Measurements

Figure 2 shows an example of how measurements are
structured in matrix D. Entries with ”?”, indicate missing
entries such that (i, j) /∈ Θ. In addition, previous matrices are
abbreviated as Dt−H . As witnessed in Figure 1(right) at least
10 previous measurements are significantly autocorrelated with
the measurements observed at time t. Using past measure-
ments, one can build models to forecast the missing mea-
surements at time-step t. Formally, given prior measurements
(dt−H,ij , . . . , dt−1,ij), the objective is to forecast the value
of dt,ij leveraging all or a subset of the past measurements.
Usually, the last L measurements are the most informative so
standard forecasting models typically focus only on those. A
popular forecasting model is the SES, which provides forecasts
based on a weighted average of L previous measurements.

0 1 2 3 4 5 6 7 8 9

k

0.100

0.194

0.289

0.383

0.478

0.572

0.667

0.761

0.856

0.950

β

0.00

0.08

0.16

0.24

0.32

0.40

Fig. 3. Weight assigned to each previous measurement (k) based on varying
β. Less weight is assigned to more distant measurements (k → ∞)

The weights decrease exponentially with recent measurements
being assigned more weight, i.e.,

dt,ij =

L−1∑
k=0

β(1− β)kdt−1−k,ij , (8)

with β ∈ (0, 1) empirically set or optimised using a training
period. This is shown at Figure 3, where as the measurement is
more distant into the past (indicated by k with k = 0 being the
most recent measurement), less weight is assigned as shown
by its darker color. We can also witness that for smaller values
of β some weight is assigned to more distant measurements.
However, most of the weight is on recent measurements.

To approximate the complete matrix D, we can stack all of
the host pairs and obtain their previous measurement by matrix
D̃ ∈ Rn2×L. We can also construct matrix B ∈ Rn2×L which
holds the associated weight for each measurements computed
using the produced coefficient at (8), such that for a series of
L measurements we have vector b = [β(1 − β)L, . . . , β(1 −
β)0]T . Then, the general loss function in (1) is expressed as:

J(D̃,B) = ‖vec(D)− diag(D̃B>)‖2, (9)

where I ∈ Rn2×n2

is the identity matrix and vec(·) is the
vectorized form of matrix D, and diag(·) extracts the diagonal
elements of a matrix.

B. Matrix Factorization & Time Series Forecasting Ensemble

Although a forecasting approach to this problem is pow-
erful, it fails to account for correlations between entries in
D. In addition, using forecasting models alone might be
inappropriate in cases where no previous measurements were
observed for a particular pair of hosts. Therefore, we propose
TSMF, a method that is a combination of MF with a Time-
Series forecasting component fused together in an ensemble
learning framework. Ensemble learning models have been
proven powerful in ML modelling as they allow the combi-
nation of several statistical/ML models to increase predictive
power. Using TSMF, a missing measurement is estimated as:

dt,ij = αxiy
j + (1− α)

L−1∑
k=0

β(1− β)kdt−1−k,ij . (10)

In (10), we call the first term the MF component and the
second term the Time-Series (TS) component, hence, the

𝑑𝑡−6,𝑖𝑗 𝑑𝑡−5,𝑖𝑗 ? 𝑑𝑡−3,𝑖𝑗 ? 𝑑𝑡−1,𝑖𝑗

1 2 3 4 5 6

𝑑𝑡−6

𝑑𝑡−4
𝑑𝑡−5

𝑑𝑡−3

𝑑𝑡−2

𝑑𝑡−1

Fig. 4. Missing value imputation using Linear Interpolation for a sequence
of measurements.

name TSMF. The parameter α is a weight placed on each
component. It represents the trustworthiness of the estimates
produced by the individual components. The MF and TS
components can be estimated separately. The MF component
is estimated by the update rules outlined at (4),(5). The TS
component requires no estimation as the β parameter can be
set heuristically as will be demonstrated in our experiments
discussed later. Provisional values for α can be set using the
training loss of the MF and TS components obtained from (3)
and (9), respectively, where in both equations, the training
loss is measured by using only the known measurements
(i, j) ∈ Θ. Abbreviating (3) by JMF and (9) by JTS , α can
be set by α = 1− JMF

JMF +JTS
. This value is an approximation

of how trustworthy each component is, since the training loss
can be used as a proxy for how accurate each component
(individually) will be at estimating missing entries.

C. Estimating Previous Missing Measurements

A core challenge with the TS component is the existence
of missing entries in previous measurements. As the TS
component uses the matrix D̃ which could contain missing
entries in each row, we need an auxiliary method to im-
pute any missing values. Formally, the TS component makes
estimations using L values, where d̃z are the previous L
measurements for a pair of hosts (i, j). As the vector d̃z
contains (dt−L,ij , . . . , dt−1,ij), it may very well be the case
that we have a number of missing entries M = {k|dt−k,ij =
missing ∀k ∈ L}. To alleviate this, we use Linear Inter-
polation (LI), where a missing value is imputed by drawing a
line between the missing value’s adjacent entries.

A visual representation of this method is shown in Figure
4. In this example, we have two missing entries at time-steps
k = 4 and k = 2. The values for dt−4,ij and dt−2,ij are
imputed by their adjacent entries at time-steps 5, 3 and 3, 1
respectively using LI. The exact formula is shown at (11).

dk,ij =
1

2
(dk−1,ij + dk+1,ij), ∀k ∈M. (11)

However, using LI, there are edge cases that we have to handle.
Specifically, there are three cases where this method might
be ineffective : (a-b) The first or/and last measurements are
missing, where the first value is when k = L and last k = 1
(c) All measurements are missing |M| = L. For handling

? 𝑑𝑡−5,𝑖𝑗 𝑑𝑡−4,𝑖𝑗 𝑑𝑡−3,𝑖𝑗 𝑑𝑡−2,𝑖𝑗 ?

𝒂𝒗𝒈(⋅)

Fig. 5. Handling edge case (a-b) for missing value imputation by the
arithmetic mean.

edge cases (a-b), we can simply use the arithmetic mean of all
non-missing entries such that dk,ij = 1

L−|M|
∑
dk,ij /∈M dk,ij .

A visual representation of this approach is shown at Figure 5,
where the first and last entries are missing and the rest of the
values are averaged to obtain an estimation of the missing
values. For the third edge case (c), no imputation can be
performed and the TS component cannot effectively provide an
estimation for dt,ij . However, a provisional prediction can be
made using avg(d̂t,i, d̂

j
t), where the value for dt,ij is simply

the expected value given all predictions made at row i and
column j of matrix D̂, generated by the TS component.

D. Forecasting Future Measurements

A salient feature of TSMF is that it is also able to forecast
future measurement values based on current knowledge. So
far, our focus has been on estimating missing latency measure-
ments dt,ij , ∀(i, j) /∈ Θ. Given these estimations, matrix Dt

is now complete. Therefore, the TS component can incorporate
the known measurements in D̃ by shifting the window of
L previous measurements by 1 such that any measurement
at time-step t is now considered as a previous measurement.
Given this information, forecasts for Dt+1 can be produced
by the TS component. The MF component in this scenario
provides the same estimation values as the previous time-step
such that D̂t = XY = D̂t+1. Within the time-series forecast-
ing context, this is the same as the Naive forecasting method
[10] in which the last known value of a time-series at time step
t is the produced forecast for time step t+1. In essence, TSMF
is an ensemble technique combining a Naive forecasting model
with SES. By forecasting future measurements, we allow NCS
to make optimal choices for future communication without
incurring additional communication overhead.

V. ENHANCED LATENCY ESTIMATION BY SELECTIVE
PROBING

In current NCSs, an assumption is made on how known
measurements become available. This can happen in an active
probing setting or by collecting passive measurements be-
tweeen randomly communicating nodes. In an active probing
case, a static set of hosts are called to exchange messages
that carry the end-to-end latency of the communicating hosts.
However, some end-to-end latencies might be harder to predict
than others. Formally, each predicted measurement d̂ij is
associated with an error ε, such that dij = d̂ij + ε, where ε is

0 50 100

Initialization

0.550

0.575

0.600

0.625

0.650

0.675

n
E

rr
or

Varying Missing Entries

0 50 100

Initializations

Constant missing entries

Fig. 6. Error variation by approximating matrix D, each time with different
missing values. (Left) At each Initialization, missing entries of D are different
causing variation in accuracy. (Right) At each Initialization missing entries
are constant.

a random variable. It could very well be the case that ε varies
for different measurements with the source of error for TSMF
coming from both the MF component and the TS component.
Some explanations to this is that the measurement dij might
be less correlated with other measurements such that the MF
component is unable to produce a ‘good’ prediction. With
respect to the TS component, a time-series of measurements
for host-pair (i, j) might be more uncertain than others.

We conduct an experiment in which we randomly select
the missing entries for a matrix D, produce predictions and
repeat for a number of times/initializations. The results of
this experiment are shown in Figure 6. At each initialization,
we randomly select a number of entries in matrix D and
set them as missing. Matrix D is then approximated by
a deterministic MF method such as Singular Value Decom-
position (SVD) to avoid the stochastic nature of our own
MF component. We use SVD for this experiment since a
stochastic algorithm would not be able to show whether the
variations in accuracy are due to the algorithm or a different
selection of entries. This is reinforced by Figure 6(right) since
with the same set of missing entries, the SVD algorithm
approximates D with the same error. The metric nError here
is produced by ||D−D̂||F||D||F . However, it is evidenced by Figure
6(left) that we can approximate D with arbitrary accuracy by
selecting different entries of matrix D to be set as missing.
This finding suggests that if we are able to identify which
measurements should be known at the following time-step then
we can approximate Dt+1 with more accuracy by imposing
communication on pairs (i, j).

For this task, we construct an uncertainty matrix U ∈ Rn×n.
Each host pair (i, j) becomes associated with an uncertainty
value uij which denotes the inherent uncertainty in predicting
what the latency dt,ij would be for a particular pair. The
uncertainty value u is computed using the TS component
which can provide us with an estimation of uncertainty, given
the time-series of measurements from particular host-pairs.
The uncertainty value is computed using the residuals asso-
ciated with the predictions of previous measurements made
by the TS component. An estimation residual is computed as
et = (dt,ij − d̂t,ij)2, where d̂t,ij is the forecast produced by

𝐷𝑡−1,11 … … 𝐷𝑡−1,𝑖𝑗

𝑈11 𝑈12 𝑈13 𝑈14

𝑈21 𝑈22 𝑈23 𝑈24

𝑈31 𝑈32 𝑈33 𝑈34

𝑈41 𝑈42 𝑈43 𝑈44

𝑫𝑡−𝐻

𝑼

𝐷11 ? ? 𝐷14

? 𝐷22 𝐷23 ?

? ? ? 𝐷34

? 𝐷42 ? ?

𝑫𝑡+1

Fig. 7. The entries with the highest values of u are selected and communica-
tion is imposed at time-step t+1 for the associated host-pairs thus revealing
those entries at Dt+1.

the TS component, thus, the uncertainty value is:

uij =

√√√√ t−1∑
k=t−L

(ek,ij − eij)2, (12)

where, in (12), eij is the average of the residuals associated
with a particular host pair. This expression is equivalent to
the standard deviation σe of the residuals (L→∞). As more
variation in the residuals corresponds to uncertain forecasts
from the TS component we can impose communication at
time-step t + 1 for all of the host-pairs with the highest
associated uncertainty. This is depicted in Figure 7. The
highlighted entries correspond to the ones with the highest
values of u. At the following time-step t + 1 the partially
filled matrix Dt+1 will only have missing entries for host-
pairs which were not selected by using U.

Algorithm 1: Selecting uncertain entries based on B
Input : B is the assigned budget

U set of uncertainty values from U
Output: R most uncertain pairs (i, j)
while B > 0 and U = ∅ do
R = R∪max{U};
U = U \max{U};
B ← B − 1;

end

The selected entries are chosen based on a budget B ∈ N by
the network operator. The budget can be set appropriately so
that the network is not overwhelmed by probing messages be-
tween host-pairs wishing to identify their end-to-end latencies.
Algorithm 1 describes how this selection is made. Based on
B we select the pair with the highest associated uncertainty u
that is included in set U = {u11, u12, . . . , uij , . . . , unn}. The
corresponding pair is added to R and subsequently removed
from U . This sequence is executed iteratively until the budget
is exhausted B = 0 or not sufficient pairs remain in U .

VI. PERFORMANCE EVALUATION

In this section, we evaluate TSMF under different scenarios
using a variety of metrics. Our aim is to answer the following
questions:

1) How accurate is TSMF compared to other baseline and
recent approaches?

2) How well does TSMF perform in web-service recom-
mendation and forecasting tasks?

3) Can TSMF achieve better overall accuracy by selecting
hosts that should communicate at next time-step t+ 1 ?

4) How sensitive is TSMF to different associated parame-
ters?

A. Latency Prediction Accuracy

We evaluate the accuracy of TSMF in predicting missing
entries from incomplete matrices from two well-known data
sets used in the literature [9], [16], abbreviated as Seattle
and PlanetLab. Seattle contains 688 matrices, each one with
99 × 99 entries, which correspond to measurements between
different devices (spanning from cellular devices to desktop
computers) taken at different time intervals. PlanetLab con-
tains 18 matrices, with 490× 490 entries, taken from devices
in a peer-to-peer network. The accuracy is measured using
relative error which is computed by rel = |dij−d̂ijdij

| (where
less is better). We sample 100 random matrices from the
Seattle dataset and 20 random matrices from the PlanetLab
dataset to compute the various evaluation metrics described
below.

We compare TSMF with 4 other methods: (1) N3D (2)
N3Dv2 are algorithms described in [9], N3D follows a hybrid
approach using MF and Euclidean Embedding. To the best of
our knowledge, N3Dv2 is the only available method taking
the temporal dynamics of measurements under consideration.
Hence, we are mainly interested in comparing TSMF’s accu-
racy with N3Dv2. In addition, we assess (3) SMF, which is
an MF approach using SGD (to be used as a baseline) and
(4) Vivaldi [3], which is a well known Euclidean Embedding
method. Note: Details on parameters used and reproducibility
of experiments will be made available in a github repository.
We omit this for now to not violate the double-blind constraint.

The results of this experiment are shown in Figure 8(left)
for Seattle and Figure 8(right) for PlanetLab. For each model,
two boxplots are shown that correspond to different ratios for
missing entries. The blue boxplots correspond to 30% of the
total entries in the dataset missing whereas the orange boxplots
correspond to 70% of the entries missing. For PlanetLab, we
have removed the blue boxplots for all models apart from
TSMF and SMF as the rest of the methods performed poorly,
possibly due to overfitting. As the number of available entries
is at 0.7 × 4902 (when the missing ratio is at 30%), some
methods could overfit due to the large number of training
examples and not be able to generalize to predict missing
entries.

However, all models performed similarly when the missing
ratio for PlanetLab is at 70%. This is because we observed
little temporal variability in the PlanetLab dataset as was also
witnessed by [9]. On the other hand, we observe TSMF’s
accuracy far surpassing all other methods under comparison
for the Seattle dataset, in which the temporal variability was
much higher. We also witness that N3Dv2 performed worse at

Fig. 8. Relative Error across different models for (left) Seattle (right)
PlanetLab datasets and ratios of missing entries.

the tails of the distribution than its simple predecessor, N3D,
which does not incorporate any temporal information.

In our comparative assessment for latency prediction accu-
racy, we include certain additional metrics to report on differ-
ent aspects that have to be considered when estimating end-to-
end latencies. We report our findings on 4 additional metrics:
(1) Stress, (2) Consistency, (3) Median Absolute Error (MAE)
and (4) normalized Root Mean Squared Error (nRMSE).

Stress is computed over all entries by

√∑
ij(dij−d̂ij)2∑

i6=j d
2
ij

; it

characterises the overall fitness of the model (less is better)
and has also been reported in prior work [8]. Consistency is an
important aspect introduced in [5]; it outputs a statistic lying
between [0, 1], (closer to 1 is better) reporting on whether
the implication d̂i,j > d̂u,v ⇐⇒ di,j > du,v holds. The
implication, denotes that a predicted measurement d̂i,j should
be greater (or less) than another predicted measurement, d̂u,v
if and only if the true measurement, di,j is greater (or less)
than the other true measurement, du,v . This is an important
evaluation metric to consider when comparing different end-
to-end latencies between random pairs of hosts; especially in
cases where we wish to produce a sorted list of low-latency
hosts. In addition, MAE is an indication of the prediction error
(in terms of seconds) for 50% of all estimated entries. Lastly,
we report on nRMSE which is a complimentary metric to
Relative Error as it allows for model comparison that is not
susceptible to large errors when measurements (dij) are small.

All metrics were computed using the Seattle dataset over
100 random matrices with {30%, 70%} entries missing. The
results are shown in Figure 9 and, at a first glance, we notice
that TSMF outperforms all other approaches for all metrics
used. Specifically, for Stress, we see a large difference across
both ratios used between SMF, TSMF, Vivaldi and N3D,
N3Dv2. TSMF, has the lowest Stress reported at 0.70 and
0.73 for ratios 30% and 70%, respectively. In addition, TSMF
reports the highest overall Consistency at 77% and 74% for
ratios 30% and 70%, respectively. This shows that more than
70% of pair comparisons are accurate. The rest of the models
are close to 50% indicating the superiority of TSMF in this
task.

Moreover, the MAE for TSMF is reported at 0.10 (seconds),

0.0 2.5 5.0 7.5

Stress

N3D
N3Dv2

SMF
TSMF
Vivaldi

0.00 0.25 0.50 0.75

Consistency

0.0 0.2 0.4

MAE

N3D
N3Dv2

SMF
TSMF
Vivaldi

0 10 20

nRMSE

Ratio
0.3 0.7

Fig. 9. Alternative latency prediction accuracy metrics measured for different
models at different ratios (Seattle dataset).

p@10 p@100 NDCG@10 NDCG@100
Model
NMF 0.012646 0.089488 0.147761 0.215652
SVD 0.007602 0.059561 0.133791 0.172975
SMF 0.021637 0.165234 0.190211 0.310334
TSMF 0.086330 0.293816 0.325301 0.463622
TSMF-NMF 0.044956 0.228070 0.247146 0.383865
TSMF-SVD 0.042032 0.227675 0.230410 0.368401

TABLE I
WEB-SERVICE RECOMMENDATION ACCURACY VALUES VARY WITHIN
[0, 1]. LARGER VALUES SIGNIFYING BETTER ACCURACY; HIGHLIGHTED

VALUES ARE THE LARGEST PER-COLUMN.

3× less than the MAE reported by N3D, N3Dv2 methods and
around 5× less than SMF. Lastly, for nRMSE, there is notable
difference between SMF, TSMF, Vivaldi and N3D/N3Dv2
methods. This reinforces our findings exhibited in Figure 8
suggesting better overall accuracy when using TSMF. We also
note that Vivaldi performs similarly well but its application is
limited and cannot be utilized in additional tasks, such as Web
Service recommendation and Forecasting. 1

B. Recommendation & Forecasting Prediction Accuracy

In this experiment, we evaluate TSMF in the context of
Web-Service recommendation, where the task is to identify
the top-k services (with the lowest latency) a particular host
should communicate with to improve QoS. We used a dataset
made available by [15], which includes 64 matrices with
measurements from 4500 web-services by 142 users. For each
user, these services are sorted in an ascending order using
the actual measurements and then each method is evaluated
based on its produced predicted measurements. We use the
fundamental metrics Precision@k (p@k) and Normalized Dis-
counted Cumulative Gain@k (NDCG@k) generally used in
Recommender Systems and also used by prior work [17].
These metrics assess the accuracy of the methods in producing
top-k ranked lists of web services.

We compare TSMF against alternative MF approaches:
Nonnegative Matrix Factorization (NMF) and Singular Value
Decomposition (SVD) and Simple MF (SMF). We also include

1Similar results are obtained from PlanetLab; not showed here due to space
limitations.

TSMF SES TSMF-SVD TSMF-NMF
RMSE 0.57 0.56 0.54 0.53

TABLE II
FORECASTING ACCURACY (RMSE)

these methods as alternatives to the MF component in TSMF,
namely TSMF-NMF, TSMF-SVD. The results are shown in
Table I, in which TSMF performed best, as shown by the
bold entries which denote the highest score for each column
(metric). Specifically, p@k, shows the overlap ratio between
the true top-k list of web-services and the predicted top-k
list. So for k = 10 we see that all methods do not perform
particularly well, with TSMF obtaining the highest ratio at
0.08. However, when computing the average latency difference
between web-services in the true top-10 list and the predicted
list obtained using TSMF, we note that latency differences
were at 0.37 (seconds). Hence, although the predicted top-10
list does not include the same web-services (per their ID),
it includes similar (in terms of latency) web-services. As the
number of web-services k increase, so does p@k, with TSMF
having the highest ratio at 0.29 for p@100.

In general, it is important to produce a predicted top-k
list, where the initial entries match the true entries more than
entries listed at the end of the list. Because there should be
more weight given for getting the first few entries right as
it is those web-services that the user will connect to. The
metric that we have included in this experiment, NDCG@k,
captures this phenomenon. The metric penalizes a method
which includes low-latency web-services at the end of the list
and gain is accumulated from the top with entries at the end
of the list having a discounted gain. For both NDCG@10
and NDCG@100, TSMF performs best, indicating that the
produced top-k lists include the lowest-latency web-services
at the start of the list. Overall, the results show the applica-
bility of our proposed method in the context of web-service
recommendation.

We also evaluate TSMF’s capability in forecasting future
measurements based on prior and current measurements. Being
able to forecast future end-to-end latencies between hosts is
important as a particular host can pre-configure communica-
tion with other hosts. In this experiment, we used the Seattle
dataset and compared the accuracy of TSMF, against SES,
TSMF-NMF, and TSMF-SVD. We evaluate their accuracy
based on Root Mean Squared Error (RMSE) measured using
all entries in Dt+1

2. Each model produces estimates for future
measurements based on the last L = 5 matrices. The results of
this experiments are shown in Table II, which evidences that
all approaches perform similarly to this task. On average, the
forecasts of TSMF are expected to be off by 0.57 (seconds).
All other methods have similar results as ”TS”=SES. The only
difference, is the MF components used which also provide
forecasts by using the latest estimation. However, no notable
differences were observed.

2We use 20 randomly selected matrices.

No optimal selection
(random)

Optimal selection of
missing entries

0.2

0.3

0.4

0.5

0.6

R
el

at
iv

e
E

rr
or

Fig. 10. Optimal selection of missing entries using the uncertainty values
associated with measurement entries.

C. Accuracy Improvement using Pre-selected Entries

As described in Section V, we can leverage the uncertainty
values of the TS component to identify which hosts should
communicate during the following time-steps. By doing so, we
depart from a passive monitoring scenario and leverage active
probing to improve overall accuracy in estimating the rest of
the missing entries. To examine this premise, we conduct an
experiment using the Seattle dataset with a fixed ratio of 30%
missing entries. We select 50 random matrices with missing
entries selected at (a) random and (b) optimal selection using
uncertainty values. The TSMF is then used to predict the
remaining missing entries and the relative error associated
with each missing entry is computed. In Figure 10, we plot
the boxplots describing the distribution of relative error for
both approaches. Overall, we observe lower error by using our
proposed approach. When performing a paired t-test using the
obtained relative error values, we reject the null hypothesis of
the mean relative error being identical with p = 0.00002. This
is because TSMF has the ability to flag the most uncertain
entries in matrix Dt. By flagging these entries, it is causing
them to be revealed at the next time step Dt+1 with the
remaining entries being much easier to estimate.

D. TSMF Sensitivity Analysis

TSMF has a number of hyper-parameters that should be
tuned (usually using past known matrices) before being used
to make future estimations. In this section, we evaluate the
impact of each of those hyper-parameters to assess their
importance and identify well-performing parameter values. We
use the Seattle dataset and select 10 random matrices with 30%
missing entries and evaluate the loss = ‖D−D̂‖F

‖D‖F for each
tested parameter value. Specifically we vary: (a) time lags,
L ∈ [5, 50), (b) parameter α ∈ [0, 1), (c) rank r ∈ [5, 40),
(d) parameter β ∈ [0.1, 0.95). The results of the sensitivity
analysis are shown in Figure 11. For parameter L (time lags),
loss increases and then stabilizes, after incorporating more than
15 past observations. This is because more distant observations
are less informative and negatively influence estimations.
Parameter α influences the balance between predictions from
the MF and TS components. An increased value for α means
that more weight is given to the predictions made by the MF
components and less to the TS component. As seen in this

20 40

Lags

0.36

0.37

0.38

0.39

L
os

s

0.0 0.5 1.0

α

0.3

0.4

0.5

10 20 30

Rank

0.33

0.34

0.35

L
os

s

0.25 0.50 0.75

β

0.30

0.32

0.34

0.36

L
os

s

Fig. 11. TSMF sensitivity analysis over different hyper-parameters.

experiment, the TS component produces better estimations
than the MF component for this particular dataset. Specifically,
the lowest error is obtained at α = 0.2, at which point
the error starts increasing for α > 0.2. It does not imply
that the MF component alone is not accurate. Instead, it
demonstrates the superiority of using an ensemble (hybrid)
approach combining both MF and TS components. Relying
only on the MF component at α = 1 can often lead to less-
accurate estimates as the temporal dynamics of measurements
are not exploited, as evidenced in the comparative assessment.

In Figure 11 (lower-left), we observe that an increased
rank r offers no significant additional benefit in this case.
The missing measurements can be estimated accurately with
a relatively small rank for the MF component. In addition,
as we fix the value of α = 0.5, the MF component does
not produce the end predictions by itself, thus, the relative
importance of rank might be decreased. Suggesting that this
experiment might have failed to detect the actual importance
of rank to the MF component. However, when testing with
α = 1, (giving full weight to the MF component) there
was no observable difference to the sensitivity results. Lastly,
we examine the impact of parameter β which is associated
with the TS component. As β is increased more weight is
given to the most recent observations and less weight to
more distant ones. By considering more distant observations,
the expected loss is increased, reinforcing our finding for
parameter L which demonstrated the same thing. However, as
β is increased, the loss steadily decreases indicating that, in
this case, more recent observations carry more information and
are more useful for making predictions. (Note: SGD learning
rate γ in (5), (4) is set to 0.1 as suggested in [1] for robust
convergence.)

VII. RELATED WORK

Over the past decades, research in NCS has been strong,
mainly due to the rise of different types of overlay networks.
The challenge in such networks is being able to predict end-
to-end latencies in diverse paths for optimal peer selection.

Initial attempts at this were made by methods such as [3],
[12]. The main approach was to assign Euclidean coordinates
for each host and then use a learning procedure to adapt
these coordinates so that the distance between a pair of hosts
approximates their end-to-end latency. Such approaches shown
to suffer from inaccuracies in modeling end-to-end latencies
due to large number of TIVs [6].

On the contrary, more recent work [2], [7]–[9], [11], [13],
[16], [17], including the one presented in this paper, uses
Matrix Factorization which does not suffer from this shortcom-
ing. MF methods can be categorised to centralized [9], [16],
decentralized [8] or landmark approaches [11]. In centralized
approaches, it is assumed that all known measurements are
available centrally where the algorithm is executed and the
predicted measurements are subsequently distributed to the
hosts. Although this approach might have some overhead in
communication it generally leads to more stable/accurate so-
lutions as all information necessary is available centrally. In a
decentralized setting, each host leverages local measurements
and estimations are performed locally. Specifically, every host
i, adapts its assigned vectors xi,y

i, using measurements that
were obtained passively by communicating with K other hosts.
All K hosts, also transmit their vectors xk,y

k,∀k ∈ K to
host i. Host i is then able to perform estimations locally by
using the available information. However, this might prove
problematic in scenarios where a host i wishes to estimate
latencies for all other N − 1 hosts in a network with total
participating nodes set as N . As it only has information on
K nodes, with K � N this becomes impossible. Lastly, a
landmark-based approach sets random hosts as landmarks with
which the participating hosts exchange messages. The latency
between a pair of hosts is then determined by the distance
of the two hosts to the landmark nodes. We note that this
approach could lead to significant inaccuracies as the paths
followed from host to landmark and from host to host could
be drastically different. For TSMF, we assume a centralized
architecture, where all information is available centrally. Once
TSMF is trained, its components can be transmitted to the
participating hosts such that estimations for all other hosts
can be performed locally.

The temporal nature of measurements has not been ex-
ploited fully by prior work. In [9], [16], this property was used
to construct a much bigger matrix by stacking the matrices
obtained at previous time-steps. In our initial experimentation
and during our comparisons with the approaches discussed at
[9], we find this approach to be extremely time-consuming
and not being able to fully exploit the temporal property. In
addition, in [13], the dynamic nature of measurements was
addressed (not exploited), by assuming that each measurement
dij is inherently uncertain and assigned an error term to ac-
count for this fact. To our knowledge TSMF, is the first model
proposed that exploits the temporal property of measurements
by fusing together time-series forecasting and MF models.

In addition, we notice a transition in the context to which
NCSs are applied. From peer-to-peer networks in Vivaldi [3]
to mobile networks [9], to Fog/Cloud latency estimation [7]

and lastly for Web-Service recommendation [17]. TSMF, does
not make any assumptions as to the context that it can be
applied. Hence, we provide various experimental results using
data sets from a variety of contexts.

VIII. CONCLUSIONS

We introduce TSMF, a hybrid approach based on Time
Series forecasting and Matrix Factorization, capable of ac-
curately estimating and forecasting end-to-end latencies in
large networks. Unlike current MF approaches, TSMF exploits
the temporal dynamics of latency measurements structured
in matrices to achieve accurate and robust estimations. As it
leverages an ensemble approach, TSMF outperforms several
other approaches based on MF, Euclidean Embedding and
approaches that also exploit temporal properties of measure-
ments. In addition, we evaluate and show that TSMF acts as a
web-service recommender for users wishing to communicate
with the fastest responding node. We have also demonstrated
that TSMF forecasts future end-to-end latencies, something
that is not possible with the standard approaches witnessed
in prior work. Finally, using TSMF, we are capable of se-
lecting pairs of hosts that should communicate in the future
such that TSMF’s accuracy is improved when making future
estimations.

ACKNOWLEDGMENTS

This work has been supported in part by the UK Engineer-
ing and Physical Sciences Research Council (EPSRC) grant
EP/N033957/1.

REFERENCES

[1] L. Bottou. Large-scale machine learning with stochastic gradient
descent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer,
2010.

[2] Y. Chen, X. Wang, C. Shi, E. K. Lua, X. Fu, B. Deng, and X. Li.
Phoenix: A Weight-Based Network Coordinate System Using Matrix
Factorization. IEEE Transactions on Network and Service Management,
8(4):334–347, Dec. 2011.

[3] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: a decentralized
network coordinate system. In SIGCOMM ’04, SIGCOMM ’04, pages
15–26, Portland, Oregon, USA, Aug. 2004. Association for Computing
Machinery.

[4] C. C. Holt. Forecasting seasonals and trends by exponentially weighted
moving averages. International journal of forecasting, 20(1):5–10, 2004.

[5] H. Huang, H. Yin, G. Min, D. Wu, Y. Wu, T. Zuo, and K. Li. Network
distance prediction for enabling service-oriented applications over large-
scale networks. IEEE Communications Magazine, 2015.

[6] S. Lee, Z.-L. Zhang, S. Sahu, and D. Saha. On Suitability of Euclidean
Embedding for Host-Based Network Coordinate Systems. IEEE/ACM
Transactions on Networking, 18(1):27–40, Feb. 2010.

[7] J. Li, T. Zhang, J. Jin, Y. Yang, D. Yuan, and L. Gao. Latency
estimation for fog-based internet of things. In 2017 27th International
Telecommunication Networks and Applications Conference (ITNAC),
pages 1–6, Nov. 2017.

[8] Y. Liao, W. Du, P. Geurts, and G. Leduc. DMFSGD: A Decentral-
ized Matrix Factorization Algorithm for Network Distance Prediction.
IEEE/ACM Transactions on Networking, 21(5):1511–1524, Oct. 2013.

[9] B. Liu, D. Niu, Z. Li, and H. V. Zhao. Network latency prediction for
personal devices: Distance-feature decomposition from 3D sampling.
In 2015 IEEE Conference on Computer Communications (INFOCOM),
pages 307–315, Apr. 2015.

[10] S. Makridakis, S. C. Wheelwright, and R. J. Hyndman. Forecasting
methods and applications. John wiley & sons, 2008.

[11] Y. Mao, L. K. Saul, and J. M. Smith. IDES: An Internet Distance
Estimation Service for Large Networks. IEEE Journal on Selected Areas
in Communications, 24(12):2273–2284, Dec. 2006.

[12] T. Ng and Hui Zhang. Predicting Internet network distance with
coordinates-based approaches (GNP). In Proceedings.Twenty-First An-
nual Joint Conference of the IEEE Computer and Communications
Societies, volume 1, pages 170–179, New York, NY, USA, 2002. IEEE.

[13] R. Tripathi and K. Rajawat. Dynamic Network Latency Prediction
with Adaptive Matrix Completion. In 2018 International Conference
on Signal Processing and Communications (SPCOM), pages 407–411,
July 2018.

[14] H. Zheng, E. K. Lua, M. Pias, and T. G. Griffin. Internet routing policies
and round-trip-times. In International Workshop on Passive and Active
Network Measurement, pages 236–250. Springer, 2005.

[15] Z. Zheng, Y. Zhang, and M. R. Lyu. Investigating qos of real-world web
services. IEEE transactions on services computing, 7(1):32–39, 2012.

[16] R. Zhu, B. Liu, D. Niu, Z. Li, and H. V. Zhao. Network Latency
Estimation for Personal Devices: A Matrix Completion Approach.
IEEE/ACM Transactions on Networking, 25(2):724–737, Apr. 2017.

[17] R. Zhu, D. Niu, and Z. Li. Robust web service recommendation
via quantile matrix factorization. In IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications, pages 1–9, May 2017.

