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Abstract—Several data mining tasks focus on repeatedly in-
specting multidimensional data regions summarized by a statistic.
The value of this statistic (e.g., region-population sizes, order
moments) is used to classify the region’s interesting-ness. These
regions can be naively extracted from the entire dataspace, which
is extremely time-consuming and compute-resource demanding.
This paper studies the reverse problem: analysts provide a cut-
off value for a statistic of interest and in turn our proposed
framework efficiently identifies multidimensional regions whose
statistic exceeds (or is below) the given cut-off value (according to
user’s needs). However, as data dimensions and size increase such
task inevitably becomes laborious and costly. To alleviate this cost,
our solution coined SuRF (SUrrogate Region Finder) leverages
historical region evaluations to train surrogate models that learn
to approximate the distribution of the statistic of interest. It then
makes use of evolutionary multi-modal optimization to effectively
and efficiently identify regions of interest regardless of data size
and dimensionality. The accuracy, efficiency, and scalability of
our approach are demonstrated with experiments using synthetic
and real-world datasets and compared with other methods.

Index Terms—Surrogate model estimation, statistical learning,
swarm intelligence, evolutionary multimodal optimization.

I. INTRODUCTION

Consider Exploratory Data Analysis (EDA) whereby an-
alysts engage in repeatedly selecting regions in their data
and subsequently summarizing them by extracting statistics
[16]. For instance, analyzing spatial data one might filter
out all data points except the ones of a specific district
and then measure the number of data points within that
region to infer the interesting-ness of it. Multiple meth-
ods/algorithms/visualizations implicitly adopt this process and
are part of an analyst’s toolbox. A problem with this approach
is that the task of mining regions of interest is a tedious
and laborious process and in the worst case has exponential
complexity. The interesting-ness of a region can also be
measured by comparing its extracted statistic with a cut-
off value or a given threshold by the analysts/applications.
Regions whose statistics are greater/less than a given thresh-
old are deemed more interesting. This approach is found in
numerous applications. For instance, in cluster analysis [25]
when deciding which clusters to prune, in detecting regions of
interest in fMRI scans [24] (where only the regions that are
‘activated’ are shown), when trying to identify landmarks [28]
based on tracking data.

A. Use Case Examples

Let 2-dimensional spatial coordinates describe the locations
of Crime Incidents (or any data points with spatial dimensions
like traffic congestion and pollution levels in urban areas, etc.).
Proactively identifying regions which contain a pre-defined
number of data points within them can advise analysts as
to which areas are worth looking/exploring further into. For
instance, a region having more crime incidents than a global
threshold or having higher (local) average deprivation/crime-
index indicator could suggest lack of infrastructure, policing
or social/economic disparities compared to other regions.
Identifying such regions is not trivial and we will show that a
naive approach has exponential complexity.

The use cases are not restricted to density of data points
within regions. For instance, using data from activity trackers,
analysts desire to find time-frames (regions in time) with
high ratio of a specific activity (e.g., sitting, standing etc).
Those time-frames comprise crucial information to the activity
patterns of a user. If other attributes are also incorporated, like
GPS coordinates, geo-spatial readings from accelerometers,
the analysts can be advised as to when & where an activity
occurs most often, along with what type of readings indicate
the activity is taking place. Note that the regions of interest
denote boundaries in multidimensional space thus making
them easy to interpret.

Moving to high dimensional use cases, within Machine
Learning (ML) classification problems, analysts are often
interested in finding regions with high ratio of certain classes
(class-labels), thus, implicitly suggesting classification bound-
aries. This task cannot be performed visually unless dimen-
sionality reduction is employed which does not guarantee fine-
grained and accurate results (going back to original space) and
may suggest regions which are no longer interpretable.

B. Contributions

In light of this, we contribute a methodology to reduce the
complexity of searching for regions of interest per analyst
request given a threshold. We formulate the problem at hand
as an optimization one which can be of multimodal nature
as multiple regions matching the analyst request can exist.
We identify the back-end data/analytics system as being a
bottleneck in examining the validity of the proposed regions.
To alleviate this key problem, we propose the use of ML
models to learn from past evaluations and approximate the



behavior of the back-end system, i.e., to find surrogate models
that replace the back-end data system for this task. We then
use these models in an evolutionary multimodal optimization
(based on the principles of swarm intelligence) for identifying
the regions of interest per analyst request. To this end, the
paper provides the following contributions:
• We formalize the task of mining interesting regions based

on statistics given a cut-off value and provide objective
functions for optimization.

• We propose the use of multimodal multiple-swarm opti-
mization algorithm to locate multiple regions of interest

• We adopt statistical learning for approximating the back-
end system via past function evaluations. Both ML-driven
approximation and evolutionary optimization alleviate the
inherent complexity of the considered task.

• Finally, we provide extensive experimental results eval-
uating and comparing SuRF and the various algorithmic
strategies with other methods.

The rest of the paper is organized as follows: Section II
formalizes the problem of finding regions of interest and de-
scribes a baseline algorithm, which is of exponential complex-
ity. Section III defines the optimization problem at hand and
introduces evolutionary multimodal optimization for solving it.
Section IV describes the type of surrogate ML model needed
to approximate the behavior of the back-end analytics system.
Finally Section V contains a comprehensive list of experiments
and results that assess the accuracy and efficiency of SuRF.

II. PROBLEM DEFINITION & RATIONALE

Definition 1: (Data Vector) Let a = (a1, . . . , ad)> ∈ Rd

denote a multivariate random data vector. A dataset B is a
collection of N data vectors {ak}Nk=1.

Definition 2: (Statistic Region) We define a statistic region
in a d-dimensional vector space via the (2d+ 1)-dimensional
information vector q = [x, l, y]>, where x = [x1, . . . , xd]> ∈
Rd is the region center point of the hyper-rectangle with side
lengths l = [l1, . . . , ld]> ∈ Rd

+ across the d dimensions.
A statistic region q over dataset B is associated with the
subset D ⊆ B encompassing vectors a such that {a ∈
D|∧d

i=1(xi− li ≤ ai ≤ xi + li)}. The component y = f(x, l)
denotes a statistical mapping f : Rd × Rd

+ 7→ R over D
from the hyper-rectangle [x, l] to a statistic of interest y ∈ R,
i.e., scalar y is the statistic extracted from the data vectors
in D. This can be (not limited to) e.g., number of vectors in
D, i.e., y = f(x, l) = |D|, or the average āi of dimension
ai, i.e., y = f(x, l; i) = 1

|D|
∑|D|

k=1 ai,k, ak ∈ D. Note
that in the case of the average āi the i-th dimension is not
part of the defined hyper-rectangle and the definition becomes
{a ∈ D|∧j−i∈d(xj − lj ≤ aj ≤ xj + lj)}.

Definition 3: (Surrogate Model) Given a region q, the
corresponding mapping f returns a local statistic of interest
applied to data vectors in D. f depends on the conditional data
distribution p(a|x, l) defined by the hyper-rectangle [x, l].

The actual evaluation of f is computationally expensive as
one has to identify the complete data subset D given region q
out of all data points. Therefore, we rest on an approximate

surrogate model f̂ to approximate f , i.e., f ≈ f̂ given any
random q. Such approximation exploits past actual evaluations
of f given random regions. Let M regions Q = {qm}Mm=1

over the data set B. We can then find a function estimate
f̂ for f by fitting Machine Learning (ML) models using
past actual evaluations {fm} over their corresponding subsets
{Dm ⊂ B}. A broad range of supervised ML methods exist
for training a ML model f̂ to f -approximation, e.g., Neural
Networks, Gradient Boosted Trees focusing on minimizing the
Expected Prediction Error (EPE) E(x,l)[(f(x, l) − f̂(x, l))2].
Any estimate model f̂ can approximate f given a random q
with arbitrary accuracy. After training the surrogate model f̂ ,
the evaluation of f given a random region q can be achieved
by f̂ instead of actually evaluating f . This yields orders of
magnitude speed-ups with a trade-off in accuracy, since the
evaluation of f̂ does not involve identification and access to
the data vectors in D.

Problem 1: Given a user/application requested statistic cut-
off value yR ∈ R, seek the k unknown regions {qk} over the
vectorial space of B such that their corresponding statistics
{yk} are less (or greater) than yR. That is, find the k unknown
regions {qk} defined by [xk, lk]:

{qk ∈ R2d+1 : yk = f(xk, lk) < yR,∀k}. (1)

Note: we adopt (yk > yR) in the case where the sought
statistics are all greater than yR. For instance, find the areas
where the crime index is greater than 60%, i.e., the statistic
here is the number of crime incidents of areas, or find these
areas where the average deprivation score is less than the
expected one, i.e., basic statistics may include average health
index and wage of areas.

To avoid the inherent computationally heavy task of eval-
uating all possible (not trivially countable) sub-regions that
satisfy (1) (see later), we approach a solution to Problem
1 using surrogate models {f̂} over a dataset B. Evidently,
this approach introduces approximation of the evaluation of
(1) by replacing f(xk, lk) with f̂(xk, lk). We also, re-write
our Problem 1 to be expressed as an optimization problem.
We define an objective function that helps us find multiple
regions by finding local-optima. In the optimization function,
we incorporate region size defined by [x, l], which is of
high importance as an arbitrarily large size might not be
informative enough. For instance, if we seek regions with
population number larger than yR with yR < |B|, then a region
covering all data vectors (whole data-space) is the optimal
result. Therefore, we factor in the region size in our objective
function defined as:

J(x, l) =
yR − f(x, l)(∏d

i=1 li

)c . (2)

Eq. (2) indicates that the objective considers the total area
covered by the sought region in the denominator. A single
global optimal solution maximizing the objectve at Eq. (2)
would be an infinitesimal box surrounding a single point with



the greatest difference given by yR−f(x, l). Indeed this would
be a valid solution and might be of interest to the analyst.
However, as we will later show there could be multiple local
optimal solutions meeting the constraints (introduced at (3))
and maximizing (2). Hence, we are not interested in finding
one global solution to the given objective, but many. For this
reason, introduce a tuning scalar parameter c, which allows
the user to restrict to smaller/larger areas. Hence, we seek the
region(s):

[x∗, l∗] = arg max
[x,l]∈R2d

J(x, l) s.t. f(x, l) < yR. (3)

In the case f(x, l) > yR, we maximize −J(x, l). In the
remainder we use (3) without loss of generality. To avoid
computational burden we take the logarithm of (2) obtaining:

J (x, l) = log(J(x, l)) = log(yR − f(x, l))− c‖ξ‖1, (4)

where ξ = [log(l1), . . . , log(ld)]> and ‖ξ‖1=
∑d

i=1 log(li)
is the L1 norm of the log-vector of l = [l1, . . . , ld]>.
An interesting property arises from (4) as the logarithm is
undefined for negative values. Thus, the objective implicitly
rejects regions in which yR − f(x, l) < 0 conforming to the
constraint of finding regions less than yR (and vice versa for
f(x, l) > yR), as will be shown in our experiments. In (4),
c > 0 is the L1 regularization parameter limiting the size of
ξ (and of l) coefficients and results in finding fine-grained
regions (in size), as discussed later.

A. Baseline Complexity

Before elaborating on our computationally efficient approx-
imate solution of Problem 1, we first report on a baseline
solution. The computational complexity of mining the k
regions in (1) grows exponentially with data dimensionality
d and size N . It is not trivial to find exact solutions given
continuous data domain of (if not all) different dimensions
in B. Given continuous (real-values) attributes xi, one way
of solving Problem 1 is to perform an exhaustive search.
Initially, we could discretize the data using a finite number
of multidimensional center points to obtain several n regions
{x1 � x2 . . . � xn};xi ∈ Rd (� denotes the point-
wise inequality between values of the same dimension). This
discretization yields an approximate solution, as the optimal
center for a region could lie in-between the proposed centers.
In addition, the arbitrary size of the regions adds another level
of complexity to the exhaustive search as we have to consider
n regions with varying sizes across dimensions, such that
{l1 � l2, . . . � lm}, which again is an approximate size of the
optimal region. Thus, to obtain potential regions via exhaustive
search yields asymptotic complexity of O((n × m)d). We
then have to evaluate the result for each of the obtained
regions using (4). Since the objective in (4) entails the eval-
uation of f over D ⊆ B, the baseline complexity becomes
O((n × m)d × N), assuming that f can be computed in a
single pass over B in linear time. As dimensions d and data
vectors N grow, the task becomes prohibitively costly. In the

next sections, we discuss how to leverage evolutionary multi-
modal optimization algorithms and surrogate models to reduce
the complexity associated with an exhaustive search.

III. OPTIMIZATION & VIABLE SOLUTIONS

Given that the baseline complexity of solving this task
becomes exponential we seek alternatives. Our task is to
maximize the objective in (4) in an efficient manner. We first
discuss about the form of the objective which will help us
identify candidate optimization algorithms.

The solution space of the objective in (4) might have a
unique (optimum) or multiple solutions (local optima) given
an arbitrary yR by the user/application. Based on Problem 1,
given a yR, the probability of finding a viable region is

P{f(x, l) > yR} = 1− FY (yR), (5)

where FY is the cumulative distribution function (CDF) of y.
Since, limyR→+∞ FY (yR) = 1, it indicates that the objective
function will have less viable solutions because P{f(x, l) >
yR} → 0, i.e., the probability of a viable solution diminishes.
In the case f(x, l) < yR, we obtain limyR→−∞ P{f(x, l) <
yR} = limyR→−∞ FY (yR) = 0. Hence, with an appropriate
yR, i.e., strictly non-zero probability (5), we expect to find
multiple regions (local optimal) satisfying (1), i.e., k ≥ 1
regions. It is highly plausible that given an appropriate yR,
multiple regions k exist satisfying f(xk, lk) > yR. Therefore
we make use of a multimodal optimization algorithm capable
of finding all the possible solutions for Problem 1.

A. Multimodal Evolutionary Optimization for Regions Finding

Due to the multimodal nature of Problem 1, we cannot
adopt optimization methods which return a single optimal so-
lution (=region) given yR. Therefore, we cast our optimization
problem as an evolutionary multimodal optimization problem
[19], [29] adopting methodologies from Swarm Intelligence.
We adopt the Glowworm Swarm Optimization (GSO), which
is a multimodal variant of the well-known Particle Swarm
Optimization (PSO) method [17]. Both GSO and PSO methods
are computationally light providing near-optimal solutions
(regions in our context) in the face of non-differentiable fitness
objective functions. Notably, GSO optimizes multimodal fit-
ness functions as it converges towards multiple local-optima,
thus considered a good candidate optimizer for our problem.

GSO makes use of particles, which are represented as
multidimensional candidate solutions in the solution (region)
space. It adopts a mechanism to move those particles around
the solution space, which converge eventually to local-optima.
A candidate solution particle p = [x, l] ∈ R2d refers to
a region defined by [x, l] in the (2d)-dimensional solution
space. The fitness objective function that we use for GSO
is the objective J in (4), which encapsulates the function
f . However, given an arbitrary yR, our method avoids the
evaluation of f over all the possible viable solutions. The
fitness function of GSO becomes the objective Ĵ derived from
(4) by replacing f with the estimate f̂ . Hence, the solutions
(regions) are evaluated against Ĵ given estimate f̂ .



In short, GSO initializes a number of particles {pi} at
random positions in R2d. Each particle pi becomes associated
with a luciferin value `i emulating glowworms. The GSO
algorithm then executes iteratively with discrete steps t =
{1, 2, . . .} and is split into two phases. The first phase updates
the luciferin `i(t) at step t for each particle pi = [xi, li] in
the swarm using:

`i(t) = (1− ρ)`i(t− 1) + γĴ (xi, li) (6)

The factor ρ in (6) is the luciferin decay, which reduces
attraction to particles that are not moving towards local-
optima. The factor γ in (6) is the luciferin enhancement and
increases attraction of particles close to local-optima dictated
by the current evaluation of Ĵ . The second phase updates the
(position) vector pi of each particle w.r.t to a neighbourhood of
particles Ni(t) = {pj : ‖pi−pj‖2 ≤ ri(t)∧ `j(t) > `i(t)} in
which the selected neighbours have higher luciferin values and
are within a current radius ri(t) in L2 (Euclidean) distance.
GSO then adapts the (position) vector pi towards a neighbour
pj ∈ Ni(t) with the maximum selection probability:

P{pj} =
`j(t)− `i(t)∑

k∈Ni(t)
`k(t)− `i(t)

(7)

Fig. 1 illustrates the final (converged) positions of the particles
over a 2-dim. region space. The x-axis denotes the center of
region x and the y-axis denotes the side length l. Hence each
particle is a region defined over this space, with the intensity of
the color at Figure 1 being the value of the objective function
(4) across the space. The final positions are illustrated as red
“x” and the slightly shaded blue dots are previous positions
held by those particles. In this example, 84% of the particles
have converged to regions satisfying the constraint set here
(f(x, l) > 1080), yR = 1080. As witnessed a large number
of particles have converged to the objective’s peaks which
suggest better regions. Indeed the regions at the bottom (the
peaks) constitute pre-defined ground-truth regions (explained
in our evaluation section). There are also particles that seem
stationary as they are in a space undefined by our objective
(4), where (f(x, l) < 1080). We also explain this in more
detail in our Evaluation section.
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Fig. 1. Final positions of particles (optimal regions) in the 2-dim. region
solution space. The objective’s (4) value is the color’s intensity with the peaks
shown at the bottom of the plot.

B. Constraining the Regions Solution Space

We introduce surrogate models in our problem to expe-
dite the process of evaluating viable regions. However, the
surrogate models are not restricted within a specific domain.
Although the underlying f is essentially undefined in regions
with no data points in B, surrogate models are not. The
purpose of ML models, is to generalize to unknown regions.
Hence, even if the function f is undefined in areas with no data
points, f̂ will still return a result. If the surrogate model is not
provided with training examples denoting where the function
is undefined then the obtained result might not reflect reality.
Therefore, we have to adapt our algorithm to account for this
fact.

In addition, the particles in GSO are initially randomly
spread across the solution space. Again, the valid solution
space (space where data points and thus regions exist) is not
reflected and particles only have their neighbours’ luciferin
values to guide them. These are inherently associated with the
fitness value Ĵ , which then goes back to our initial concern
about the validity of the surrogate models. To alleviate this, we
first approximate the distribution of the data points pA(a) (over
a sample for large-scale datasets) in B adopting Kernel Density
Estimation (KDE) [27] and then we obtain the probability
of a region containing any number of data points, i.e., from
x − l to x + l. We use this as a guide for particles when
selecting which direction to explore. Therefore, given (7),
we alternate the selection probability by multiplying with the
density (probability) of data points around the particle pj’s
data component xj :

P′{pj} =
P{pj} ·

∫ xj+lj
xj−lj pA(a)da∑

k∈Ni
P{pk} ·

∫ xk+lk
xk−lk pA(a)da

(8)

C. Complexity of Multimodal Optimization

As reported earlier, the baseline complexity of our problem
is O((n×m)d×N). By adopting GSO and surrogate models
f̂ , we expedite this process, obtaining viable solution(s) in
O(TL2d), where T is the number of iterations and L is the
number of particles for GSO. As a rule of thumb, GSO requires
less than T ≈ 100 iterations and L ≈ 100 glowworms to
converge (evidenced also in our experiments shown later). On
the contrary, using the naive approach with just n = m = 6
and d = 5, one needs to evaluate more than 6 · 107 possible
regions over N data points. On the other hand, GSO has to
execute only 100 × 100 = 104 evaluations, just 0.016% of
the evaluations needed by the baseline approach.1 Therefore,
by using GSO, the complexity is now of polynomial nature
as not all parameter values, spanning uniformly across the
entire domain space, have to be examined. In addition, the
use of surrogate models has eliminated the need to examine
N data points as the regions no longer have to be evaluated
using f . In the next section, we report on how to approximate
f using ML models. This gives a near-constant time (w.r.t

1Note: Although the complexity contains T × L2, the number of region
evaluations by the algorithm is, in fact, T × L [19].



the chosen model) performance for evaluating obtaining the
region’s statistic y.

IV. SURROGATE MODEL ESTIMATE

We could approximate f via various ML models2 trained
to associate a region [x, l] with its corresponding statistic
y = f(x, l) using a set of past function f evaluations
in Q = {qm = [xm, lm, ym]}Mm=1. Using these training
examples, ML models approximate the actual f . In general,
ML algorithms try to minimize the Expected Prediction Error
(EPE) minf̂ E[(f(x, l)−f̂(x, l))2] which is estimated using an
out-of-sample dataset different from Q. They also try to find
models which are complex enough to minimize this EPE and
simple enough to ensure good generalizability to never before
seen examples: they tune what is called the Bias-Variance
trade-off to ensure the derived model is neither under-fitting
nor over-fitting [13]. However, our task is to approximate the
behavior of the actual f applied over regions of data subsets
in B. Hence our primary concern is not to generalize well
to new examples. Instead, it is to find a surrogate model f̂ ,
which follows the trend of f over random regions given an
arbitrary yR. In other words, our desideratum of f̂ training is
that given a random region [x, l], if the statistic y = f(x, l)
and f(x, l) < yR then (and only then) the estimate ŷ = f̂(x, l),
and f̂(x, l) < yR. That is both f and f̂ should agree on
the constraint < yR for any random region. This, clearly by
definition, does not imply that |y− ŷ| is desired to be as small
as possible (i.e., minimizing the prediction error). Instead, we
would like to obtain a model f̂ such that whenever y < yR
holds then, ŷ < yR holds true, too. Surely, if f̂ minimizes
the EPE then we may statistically expect that the two above-
mentioned conditions hold true. Nonetheless, both conditions
can hold true even if it is not the case that y ≈ ŷ. To reflect
this objective, we would require to find an estimate f̂ , which
minimizes the L2 norm difference of gradients at any region:

min
f̂

E[‖∇f̂ −∇f‖2] (9)

Minimizing the gradient difference we expect that a surrogate
model f̂ resembles the behavior of the true underlying function
f . However, a number of problems arise if we seek to
minimize (9). We have no way of knowing if the true function
f is differentiable and we also do not restrict our choice
of ML models to differentiable ones. We could approximate
the gradient using a finite number of training samples that
are equally spaced in (x, l). But this would mean that we
cannot take advantage of past function evaluations, issued by
analysts/applications, as an assumption that these examples are
equally spaced is invalid.

In this paper, we do not use a specific class of ML models
that minimizes (9) and is left as our future work for further
investigation. Nevertheless, we adopt conventional ML models
minimizing the EPE, which can be directly used for providing
robust (in terms of predictability) surrogate estimate model f̂ .

2We restrict to a single class of ML models in our experimentation, however
this is not necessary and alternative ML models could be employed.

V. PERFORMANCE EVALUATION

In our evaluation, we seek to answer the following:
1) What is the impact on accuracy, for finding inter-

esting regions per user/application request using ML-
approximated surrogate models f̂?

2) What are the performance benefits of SuRF over the
baseline approach and other methods?

3) How is the efficiency and accuracy affected by SuRF-
GSO, ML-approximate surrogate models and objective
functions?

We begin by outlining the implementation details & setup,
discussing our methodology and establish evaluation metrics
in Section V-A. We showcase the accuracy of SuRF in compar-
ison to other methods using a variety of synthetic datasets in
Section V-B. A qualitative analysis over real datasets, showing
the applicability of SuRF is presented in Section V-C. The
performance benefits of SuRF are discussed in Section V-D.
The aforementioned sections provide the answers to questions
(1) and (2). Finally, we answer question (3) by evaluating
the sensitivity of objective functions, GSO and surrogate ML
models in Sections V-F, V-G, and V-H, respectively.

A. Implementation Details & Setup

We implemented our algorithms using scikit-learn [23] and
adopted the XGBoost (XGB) [10] ML model for our ML-
approximated surrogate models f̂ . We implemented Glow-
Worm [19] as our optimization algorithm. We performed our
experiments using Python 3.5 running on a desktop machine
with an Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz and
16GB RAM. The surrogate models used for both synthetic and
real datasets were trained using a set of past function evalu-
ations executed across the data space with centers x selected
uniformly at random and region side lengths l set to cover
1% − 15% (uniformly) of the data domain.3 The surrogate
models were hyper-tuned using Grid-Search [23] with K-fold
cross validation. A sensitivity analysis for surrogate models is
discussed at Section V-H. Note to reviewers: A Github repos-
itory was created to help aid the reproducibility of our exper-
iments at https://github.com/Skeftical/SuRF-Reproducibility.

Methods: We evaluate the effectiveness and efficiency on
mining interesting regions of four different methods: (i) Our
framework SuRF which is the ML-approximated surrogate
model used with the GSO (ii) Naive is the baseline method
described in Section II-A4, (iii) f+GlowWorm is the GSO
optimization coupled with the true underlying function which
accesses data to evaluate the objective function described in
(4), and (iv) PRIM, is an implementation of the algorithm
described in [14] and its implementation is obtained from [1].
PRIM is used to find regions which maximize the result of an
output variable. We have found it performs good on our task
as well.

3Please note that uniformly sampling regions across the data space with
uniform lengths is not the same as obtaining training examples that are equally
spaced across the complete domain in both x and l

4As the number of function evaluations becomes un-manageable we restrict
the discretisation to n = m = 6



Synthetic Datasets: We have created 20 synthetic datasets
to compare the methods outlined above. The size of the
datasets can be arbitrary and it is defined within each experi-
ment. The synthetic datasets have Ground Truth (GT) regions,
which are purposely either more dense than the rest of the
dataset, or have relatively higher y values (for the purposes
of testing for other statistics). The GT regions are hyper-
rectangles constraining a region in all dimensions. Concretely
we vary the following settings: number of GT regions k =
{1, 3}, statistic type for y is either: (i) ‘density’ referring to
number of data points in subset D or (ii) ‘aggregate’ referring
to average value of a certain dimension of data points in
subset D, data dimensions d ∈ {1, 2, 3, 4, 5}. Each dataset
is characterized by a variation of these settings. Note that the
statistic could be any other type, e.g., variance, high-order
moments. Figure 2 shows four different datasets with varying
settings. The sub-figures on the left show data points a for
setting d = 1, as only the dimension a1 is to be used to
bound the data space. The dimension a1 has areas with higher
values for ai and thus the average y = 1

|D|
∑|D|

m=1 ai,m over
the highlighted GT regions bounded on a1 is higher. On the
other hand, the sub-figures on the right show the corresponding
datasets for the density statistic. The region is bounded by
both a1 and a2 and for the highlighted (green rectangle) GT
area the density of data points is higher. The number of GT
regions k = 3 is evident at the bottom sub-figures, in which
multiple regions exist for both statistics, and k = 1 at the top
sub-figures.

Our goal for each synthetic dataset is to estimate the GT
boundaries as close as possible. Let R(x, l) be the hyper-
rectangle area corresponding to a random region [x, l] ∈ R2d

with coordinates: [x−l,x+l]. We use a popular metric adopted
in data mining, the Intersection over Union (IoU), also known
as the Jaccard Indexi.e., a ratio where the numerator is the
area of overlap between the bounding box (hyper-rectangle)
R(xk, lk) of the region [xk, lk] mined from any of the outlined
methods and the ground-truth bounding box G(x0, l0) corre-
sponding to the GT region [x0, l0]. The denominator is the area
of union, i.e., the area encompassed by both the R(xk, lk) and
the GT bounding box G(x0, l0), thus, we obtain:

IoU =
R(xk, lk) ∩ G(x0, l0)

R(xk, lk) ∪ G(x0, l0)
, (10)

where ∩ and ∪ in (10) are adopted as the overlap and union
operators over (hyper)-rectangles. One might notice that region
dimensionality is not exceedingly high (we experiment up
to 2d = 10 dimensions in the region solution space for
d = 5 data dimensionality). Indeed, at first we conducted
experiments by producing synthetic datasets U(0, 1)d, d� 5,
resulting to searching for regions in significantly higher than
10-dimensional spaces. However, due to the effects of curse
of dimensionality and as mentioned by Friedman et al. [13],
regions (and data points) become increasingly sparse and, thus,
the mined regions were returning no data points, thus, no
interesting regions. The expected length l of a hyper-cube to
retrieve a fraction of data points in unit volume in Rd is given

by E[r] = r
1
d [13]. Thus, as dimensionality d increases, the

expected length becomes much larger, covering most of the
data domain. Hence, the notion of finding interesting regions
becomes meaningless as we would essentially return regions
covering most of the data domain. Even though we set the
synthetic datasets’ dimensionality up to 5, we highlight the
fact that our algorithm deals with 2d dimensions as our regions
are expressed as vectors in R2d (region solution space).
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Fig. 2. Synthetic Ground Truth Regions (shaded green) for statistic type
‘aggregate‘ and d = 1(left) and ground truth regions (green rectangles) for
statistic type ‘density‘ and d = 2 (right), with both a single ground truth
region k = 1 (top) and multiple regions k = 3 (bottom).

Real Datasets: We use the Crimes [2] and Human
Activity datasets [6] publicly available online. As ground-
truth regions do not exist for these datasets, we use them to
conduct a qualitative analysis experiment, testing the applica-
bility and effectiveness of SuRF to find regions of interest
for fixed yR. Specifically, we train surrogate models using
function evaluations obtained uniformly across the data space
with varying lengths and, then, try to find regions of interest
given yR. Finally, we analyze the obtained regions and confirm
that they match to true regions in those datasets. Parameter c
for objective (2) was set to 4.

B. Accuracy of Interesting Region Identification

All experiments for assessing the accuracy of the inter-
esting region identification were performed on the constraint
f(x, l) > yR with yR set to the value close to the extracted
statistic given by the GT regions. Specifically yR = 2 for
aggregate statistics and yR = 1000 for the density statistic. As
stated, the surrogate models were trained using past function
evaluations, the number of past function evaluations varied
as the number of dimensions increases (300 − 300K) to
account for the fact that more training examples are required to
sufficiently learn a much larger space. The GSO parameters
were dynamically adjusted to reach convergence outlined in
Section V-G. The objective’s parameter was set to c = 4. For
PRIM, minimum support for the sub-boxes was set to 0.01
and the threshold for aggregate statistics to 2. For Naive as
the number of queries becomes prohibitively large we resort
to a subset of the total queries that are to be generated.



Nevertheless, this is still a good approximation for the method
outlined at Section (II-A) and serves as a good baseline. As
the synthetic dataset size in this experiment is not important
we create synthetic datasets of 7, 500−12, 500 points. Bigger
datasets will merely scale the responses. For all algorithms,
we obtain the average IoU per dataset by obtaining all the
proposed regions given by the algorithms and assessing their
IoU with the GT regions.

Figure 3 shows the average IoU over all settings used.
As dimensionality increases, the IoU decreases for all meth-
ods across all settings. It is worth mentioning that our
method is identical to the true underlying function method
(f+GlowWorm) without incurring any of the costs associ-
ated with computing the exact results of the statistics. This
leads us to believe that the error attributed to the use of
an approximation is minimal and, thus, it can be safely
used to identify interesting regions with no significant use of
computational resources. From all sub-figures, we can deduce
that dimensionality plays a crucial role in making this task
more challenging. We see a drop in IoU as d > 3, one
contributing factor is that the GT regions cover a much smaller
space in higher dimensions. Given a fixed side length of
l = 0.3 in uniform space U(0, 1), then the ratio of space
covered in d = 1 can be obtained by 0.3d = 0.31. As d
increases then the ratio of space covered becomes much less
and thus the possibility of fully intersecting with other hyper-
rectangles is relatively small. For instance the ratio of covered
space (by the GT) in d = 3 is 2.7% of the total space covered
by the unit hyper-cube.

For the aggregate statistic and k = 1 (top-left sub-figure
of Figure 3), PRIM outperforms all other methods and is
initially invariant by the increase in dimensions. However,
for the density statistic (right column in Figure 3), PRIM is
unable to spot the GT regions as it is not applicable in such
domains. PRIM constructs sub-boxes (hyper-rectangles) by
peeling across a specific dimension. It sequentially generates
smaller sub-boxes B until the support of current box βB (i.e.,
βB = |B|; the number of points belonging in B) is below a
user-specified threshold β0. PRIM tries to identify sub-boxes
with minimum support β0, that maximize the average response
value of a selected attribute. Formally, PRIM’s objective is:

max
B

E[f(a)|a ∈ B ∧ βB = β0]. (11)

The density of a box B is defined by the support to volume
ratio: |B|∏d

i li
, where the denominator is the volume of the sub-

box. To this end, there is neither a way to specify density
as the response variable, nor PRIM takes into consideration
the volume of sub-boxes. In addition, PRIM progressively
removes sub-boxes such that the expectation in (11) is greater
than what it was before the removal of the sub-box. In case
where two sub-boxes Bi and Bj provide similar gains w.r.t.
(11), then the one with less support βBi

< βBj
is removed.

However, in the case of the density statistic and, precisely
because PRIM does not consider the region covered by the
sub-boxes, a sub-box with higher density might be removed.

Method CoV
SuRF 1.11
Naive 1.10
PRIM 2
f+GlowWorm 1.26

TABLE I
COEFFICIENT OF VARIATION FOR IOU ACROSS METHODS.

Specifically, consider that there exist two boxes that both
maximize (11) and also have the same gain; then it might
be the case that βBi

> βBj
and |Bi|∏d

k lk
<
|Bj |∏d
k lk

. Which means
that even if the support of a sub-box is smaller, its density
might be larger. Of course this should not be considered as a
problem of PRIM as we are testing it in settings that was not
designed to operate. Its primary use case is to maximize the
average response of an attribute by enclosing small sub-boxes
in d-dimensional space.

PRIM also performed less than the rest methods for the
aggregate statistic and k = 3 multiple regions (bottom-left) in
Figure 3) 5. In general, we are able to get satisfactory IoU with
the Naive method, but as we will exhibit in our performance
section, its efficiency deteriorates as datasets grow in size and
dimension.
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aggregate statistic and k = 3 GT regions; (Bottom-Right) for density statistic
and k = 3 GT regions.

Figure 4 shows the average IoU along with the standard
deviation for multiple/single regions (left) and different statis-
tic/aggregate types (right). For multiple regions, Figure 4(left)
we note that PRIM has the relatively largest standard deviation
and largest decrease in accuracy as we switch from 1 GT
regions to 3; this can be also assessed by their associated
Coefficient of Variation (CoV) at Table I, i.e., the ratio of
the standard deviation to the mean. Given that, the lower the
value of CoV, the more precise the estimate becomes and the
fact that PRIM obtains the highest CoV, it indicates that it
turns unstable, across various settings. The other methods have
similar CoV’s across settings.

5The IoU for k = 3 is obtained by averaging IoU’s for 3 GT regions.



In addition, all other methods seem to be identical, with
a decrease experienced from 1 GT region to 3 GT regions.
On the other hand, the statistic type (density or aggregate)
in Figure 4(right) does not affect accuracy, apart for PRIM’s,
which as stated is not able to find regions under this setting.
Given our experiments, it is safe to conclude that SuRF is able
to detect multiple regions of interest under different types of
statistics.

k=1 k=3

Multiple Regions

0.0

0.2

0.4

0.6

Io
U

SuRF

Naive

PRIM

f+GlowWorm

Aggregate Density

Aggregate Type

0.0

0.2

0.4

0.6

Io
U

SuRF

Naive

PRIM

f+GlowWorm

Fig. 4. (Left) Average IoU for multiple regions; (right) Average IoU for
different statistics.

C. Qualitative Analysis over Real Datasets

We also run a set of experiments over real datasets to exem-
plify the use cases of SuRF. Using the approach described, we
examine whether SuRF can indeed identify regions of interest
experimenting with Crimes [2] and Human Activity [6]
real datasets. SuRF was trained using synthetically generated
past region evaluations. We use SuRF over Crimes to identify
regions where the crime index is over the 3rd quartile of a
random set of regions, i.e., yR = Q3 with f̂(x, l) > yR. Figure
5 shows the number of crimes over X-Y spatial coordinates.
The higher the intensity of the color, the higher the crime rate
is within the given area. We plot the corresponding density
values obtained by the surrogate model f̂(·), shown at Figure
5(left), and note that it is a coarse grained approximation to
the true density values shown on the right. However, optimiz-
ing the objective function using the surrogate model is still
sufficient to propose accurate regions in a matter of seconds.
The regions shown at Figure 5(left) are the regions that SuRF
identified as complying with the constraint f̂(x, l) > yR.
Figure 5(right), shows the same regions over the true density
values with 100% of the proposed regions complying with
f(x, l) > yR. This means that the obtained region defined by
(x, l) complied with the constraint > yR at both the surrogate
f̂ and the true function f . Thus, SuRF using approximate
surrogate models and GSO is able to pin-point regions of
interest in the true data space, complying with the user request
f(x, l) > yR, yR = Q3. Moreover, the regions identified are
highly parsimonious as the regions denote boundaries in X-Y
Coordinates.

Furthermore, the Human Activity dataset reports the
values for gyrometers and accelerometers. Using the parame-
ters (X, Y, Z) from the accelerometers, we used SuRF to
identify regions with high ratio for a specific activity; for this
experiment we used the human activity stand. This proac-
tively suggests classification boundaries which the analysts can
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Fig. 5. On the left, identified regions by approximate surrogate function f̂
match to regions identified by the true function f shown to the right.

TABLE II
COMPARATIVE ASSESSMENT OF DIFFERENT METHODS.

Data size N 105 106 107

Method d dim. Time (sec)

SuRF 1 1.28 1.28 1.3
2 1.4 1.4 1.4
3 1.35 1.35 1.35
4 1.63 1.63 1.64
5 1.68 1.68 1.69

Naive 1 0.01 0.16 1.94
2 3.22 33.72 341.7
3 115.49 1221.6 - (22%)
4 - (66%) - (6%) - (0.5%)
5 - (1%) - (0.1%) - (0.01%)

f+GlowWorm 1 4.71 51.9 601.32
2 26.7 280.14 2856.02
3 26.46 289.5 2808.42
4 27.1 293.62 2981.81
5 30.21 320.03 -

PRIM 1 0.15 0.4 4.8
2 0.2 1.9 32.2
3 0.56 9.3 46.3
4 0.9 9.5 160.5
5 1.28 7.36 282.6

adopt to build a baseline classifier, or further investigate the
identified region. SuRF was able to identify regions with ratio
of 33% for activity stand. Notably, the empirical CDF F̂Y ,
where Y corresponds to the ratio of data points with activ-
ity=stand, showed that the probability of obtaining yR = 0.3
was equal to P(f(x, l) > yR) = 1 − F̂Y (0.3) = 0.0035.
This denotes a highly unlikely event and also shows that
regions with higher ratios are not easy to identify. This denotes
the capability of SuRF to mine interesting regions even for
cases where the users’ requests correspond to highly unlikely
regions.

D. Models Comparison

We present a comparative assessment with other methods
to showcase the efficiency and scalability of SuRF in terms
of data size and dimensionality. We also demonstrate the
exponential complexity of the considered problem. The perfor-
mance results are shown in Table II. As shown in Table II, the
Naive method is efficient with low dimensional data (d = 1).
For Naive, we kept m = n = 6, therefore the number
of function evaluations executed were just (6 × 6)1 = 36
for d = 1. However, there is an exponential increase in



time as d increases, and with N = 107 data points, Naive
times out. The ratio included denotes the number of regions
examined before exceeding the time limit, which was set
to 3000 seconds. The same trend appears in f+GlowWorm
showing an exponential increase in the amount of time it takes
to mine interesting regions. The GSO parameters were set to
T = 100 and L = 100 for both f+GlowWorm and SuRF,
with initial swarm neighborhood range r0 = 3 and constants
γ = 0.6, ρ = 0.4 as in [19]. For these experiments, we keep
GSO’s parameters fixed to explore the effects of dimension-
ality d and data size N . At (V-G) we investigate the impact
of GSO’s parameters on efficiency. PRIM is not affected as
much and performs well across all configurations except when
the dimensions d and data points N become sufficiently large.
On the other hand, SuRF only takes a few seconds across all
configurations. Given the same dimesionality d and a varying
dataset size N , SuRF’s performance remains constant (scales
very well) as SuRF does not actually access any data during
the mining process. Of course SuRF’s surrogate models are
trained before hand for separate statistics. The models will
be trained once on a number of past region evaluations and
then successively be used for different statistics, thresholds
and by different users. Each new request does not need to
re-train the model and the overhead for training the surrogate
models of SuRF is incurred once. Note: It is worth mentioning
that all datasets were loaded in memory for performing these
experiments. For larger datasets in size N that do not fit in
memory the methods in comparison would have to perform
multiple disk accesses, thus, incurring significantly higher
costs in solving the discussed mining task. In addition, as
stated in [14], PRIM is not equipped to work with disk-access
and a common remedy would be to sample the dataset. On the
contrary, SuRF models are light enough, to always be loaded
in memory and make no use of data at all. Hence, for SuRF,
it does not matter if the data are stored in disk or on a remote
data center.

E. Training Surrogate Models

In this experiment we measure the overhead required to train
the surrogate models on a varying number of queries. The
results are shown at Figure 6. Using GridSearchCV by [23],
we are able to find optimal parameters for our model of choice.
For GridSearchCV, we pre-specify a range of parameter values
for the parameters of XGBoost. We hypertune the parameters:
(i) learning_rate ∈ [0.1, 0.01, 0.001], (ii) max_depth
∈ [3, 5, 7, 9], (iii) n_estimators ∈ [100, 200, 300] and, (iv)
reg_lambda ∈ [1, 0.1, 0.01, 0.001]. As expected, this takes
more time than only training the models with their values pre-
specified, as witnessed at Figure 6. This is because 3 × 4 ×
3 × 4 = 144 combinations have to be tested on large sets of
training examples. We could possibly reduce the number of
parameter values, to be tested, to increase efficiency. However,
we run the risk of not getting adequate approximations to f .
Surely, this should not be a problem to the analysts as the
models will only be trained once. In addition, the models could
be trained in a central location on more powerful clusters to

TABLE III
PERFORMANCE & ACCURACY COMPARISON OF DIFFERENT OBJECTIVES

Method Time (sec) Average IoU

Objective J in (4) 8.81± 0.001 0.74± 0.08
Objective J in (2) 16.3± 11.8 0.77± 0.03

expedite this process and then subsequently be used by the
analysts.
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F. Comparison of the Optimization Functions

We compare the effectiveness of the optimization objectives
outlined in (2) and (4) and present the results in Figure 7. The
top sub-figures refer to the objective function in (4) and the
bottom sub-figures refer to objective function in (2). We used
the synthetic dataset with d = 1 and k = 3 to be able to
visualise the objectives and demonstrate the multimodality in
the optimization proccess. In all sub-figures, as the region-size
optimization parameter c increases, we observe much more
contracted peaks. This is because viable region lengths l1’s
are restricted to smaller values. Regarding the objective (4),
the use of logarithms explicitly impose that for regions not
adhering to the constraint on yR, the regions become invalid
and the corresponding objective function undefined. Hence, the
white area in Figure 7(top) corresponds to those areas. Using
this objective, GSO is able to successfully isolate glowworms
initialized at those areas and eventually adjust their radii to
reach glowworms in the valid solution space only. On the
other hand, if objective (2) was to be adopted, the glowworms
could have formed neighbourhoods in what they would believe
are local optima, where in reality, those regions would be
invalid. In addition, we compare the obtained average IoU and
computational performance of the objectives shown in Table
III using the same dataset with d − 1 and k = 3. Although
we do not notice vast differences in IoU, which means that
using both objective functions SuRF is able to mine interesting
regions with the same accuracy, the performance benefits of
using the objective in (4) are clear, as it is computationally
cheaper by isolating non-viable region solution sub-spaces and
because of its structure.
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G. SuRF-GSO Algorithm Sensitivity

We have conducted experiments to evaluate the compu-
tational efficiency of GSO and also examined its rate of
convergence across different dimensions and parameter set-
tings. Please note that the Dimensions parameter has been
doubled to reflect the fact that SuRF (and GSO) operate at
2d dimensions per our definition for regions at Def.2. GSO
specific parameters such as γ, ρ are constant adopted from
the respective paper [19]. The results are shown in Figures
8 & 9. Experimentally, we have found that the number of
glowworms and neighbourhood radius (r0 in GSO parameters)
have to be adjusted to account for the enlarged region solution
space. We increase glowworms using L = 50d and radius
r0 = (1 − 1

2

1
L )

1
d adopted from [13] Section 2, Equation

(2.24). Although the number of needed iterations does vary
across settings,as witnessed at Figure 8, the average number
of iterations across all settings is 63. Making GSO a robust and
efficient algorithm for converging to the various local-optima
of the mining task, over different dimensions d and number
of multiple regions k. Moreover, the average performance
for varying number of iterations and glowworms is shown at
Figure 9. In Figure 9(left), we increase dimensionality d and
number of glowworms L as we keep the number of iterations
T = 100 constant to measure the impact on performance for a
varying number of glowworms. This has minimal effect on the
total run-time as it takes no more than 15 seconds for GSO’s
process to complete (still better than the best competitor shown
at V-D). The same holds for the number of iterations in Figure
9(right). Although the average number of iterations required to
reach convergence is estimated to be 63 and no setting required
more than T = 250 iterations, we measured the performance
for up to T = 400 iterations with L = 100. No more than
10 seconds is required for the largest number of iterations to
finish. It appears that both parameters cause an almost linear
increase in time for the same number of dimensions even if the
stated complexity was O(TL2d). This is because the number
of glowworms is small enough so that the time required is still
driven by the prediction time from the approximate f̂(x, l)
instead of the increase in glowworms.
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H. SuRF-Surrogate Model Sensitivity

In this experiment we evaluate the sensitivity of the sur-
rogate models. Specifically we examine how the number of
training samples and out-of-sample generalization error affect
the accuracy of the model. In addition, we evaluate how the
complexity of the model affects the accuracy of the model
and its ability to find obtain good IoU. Figure 10 (left) shows
a negative correlation between IoU and Root Mean Squared
Error (RMSE) obtained from the ML-trained surrogate models
using XGB. For this experiment we use the dataset with
a density static, dimensions d = 3 and single GT region
k = 1. As the out-of-sample test error (measured by RMSE)
increases, the accuracy for IoU drops. This is evidenced by an
estimated regression line along with 95% confidence interval
and Pearson’s Correlation estimated at −0.57. Therefore, it is
important to find ML models that can also act as good statistic
estimators. In addition, Figure 10 (right) shows how cross-
validated error decreases as the number of training examples
for approximating a surrogate function increases. For each
ML model at different dimensions, we stop training when no
further improvement is measured w.r.t. RMSE. We use datasets
with varying dimensions using the density statistic and single
region k = 1. The shaded area refer to the error’s standard
deviation. We note that by ∼ 1, 000 training examples, i.e.,
function evaluations, and sufficient hyper-tuning of parame-
ters, the ML models are able to learn the association between
region vectors [x, l] and statistic values y well enough. In our
region identification accuracy experiments, we examine the



IoU behaviour up to 5-dim. hyper-rectangles corresponding
to 10-dim. vectors; recall region is [x, l] with x ∈ x ∈ Rd

and l ∈ Rd
+. Hence, the XGB ML models need to learn

using 2 × d-dim. vectors. The number of examples is not at
all hard to obtain as in reality multi-dimensional regions are
extracted from datasets by a plethora of business intelligence
applications . One could also assume that the past function
evaluations can be obtained,manually by SuRF, at a regular
downtime of the system (where traffic load is low). We also
analyze the impact of the XGB-ML model complexity on
RMSE and IoU reflected by the maximum depth in regression
trees in XGB. The results for both training and cross-validation
steps are shown in Figure 11. As expected, RMSE drops as ML
model complexity is increased. Although not initially evident,
IoU has a tendency to increase when model complexity
increases. However, this might deter the analysts to training a
more complicated model as it is evident that they would be
able to get a good enough approximation with relatively less
complex models.
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VI. RELATED WORK

Identifying interesting regions can be traced back to Fried-
man et al. [14] who were interested in finding regions in d-
dimensional spaces that would maximize/minimize a depen-
dent variable y. Their algorithm processed data sequentially
to generate smaller regions (as met in regression trees) and
included a pruning step in the end. The computational cost of
their algorithm is prohibitive when considering large datasets
with respect to dimensionality and number of points. Their

objective is different from ours as we do not seek regions
that would maximize/minimize y but regions that satisfy the
conditions listed at (3). Our task is also loosely coupled
with the objective of Subspace Clustering (SC) [22]. The
algorithms proposed for SC aim to identify clusters in low-
dimensional sub-spaces by pruning regions and dimensions
using some evaluation criteria often being the support (e.g.,
number of data points w.r.t. total number of data points) of a
given region. Other measures of interestingness have also been
proposed [26] with the underlying metric still being the num-
ber of points. Such methods rely on partitioning/discretising
schemes, evaluating the density of the found regions and
pruning/merging until converging to a region of interest. This
is not ideal as the complexity is often exponential w.r.t the
number of dimensions [26] as also mentioned and experimen-
tally evidenced by our Naive/Baseline solution. In addition,
although we consider the density of regions as one example
use case, in general, we are interested in regions satisfying
the constraint outlined in (3) for any given statistic. Thus, our
objective is substantially different, but we regard it as equally
important for data mining practitioners. Furthermore, there is
large body of work on Subgroup Discovery (SD) [7], [9], [15],
of course the list is not exhaustive. The purpose of SD is to
find subsets of data that show an interesting behaviour with
respect to a given interesting-ness/quality function. It is similar
to SC, however SD generalizes the notion of interesting-ness to
subsets of data (potentially across all dimensions) of various
data types, i.e nominal, binary, numeric etc. Depending on
the data type an analogous quality/interesting-ness function
is employed. Multiple algorithms, both exhaustive [8] and
approximate [7] have been developed for this task, however
to our knowledge most algorithms are data-driven and do
not share our approach to this problem. By data-driven we
mean that they employ algorithms that work directly with the
underlying data and try to extract subgroups by repeatedly
performing region evaluations. We believe that this is costly
as datasets become larger.

Finding regions has been considered in other domains [3],
[12], [20], [28], showing an interest for such methods, with
different objectives and algorithms which consider smaller
datasets N < 200, 000. SuRF is used with an arbitrarily large
number of data points N as effectively makes no use of the
underlying database system; instead, SuRF uses ML models
to perform computations over surrogate models.

Machine Learning is increasingly being used to do heavy
lifting in data computation where faster and more light-
weight models can be leveraged to perform a variety data-
intensive tasks. For instance, the authors of [4], [5], [11]
trained ML models using past query evaluations to estimate
the cardinality of data points returned, given unseen queries
without performing computations over the dataset. In addition
other areas include : settings where an estimate of the result
of a given aggregate query is requested [21] and for light-
weight and efficient indexes over data [18]. Our approach
can similarly exploit past issued queries for mining significant
statistical information over the underlying data. However, the



core objective and context are definitely not the same. We
do not wish to train ML models that could answer unseen
queries with an arbitrary low error. Instead, we approximate
the underlying true function f using an accurate estimate f̂ ,
which we then use to inexpensively evaluate (4) and solve (3).

VII. CONCLUSIONS

We propose SuRF, a solution based on multimodal evolu-
tionary optimization and Machine Learning which efficiently
mines regions of interest in multidimensional datasets. Specif-
ically, the regions are associated with a statistic of interest y
computed using the data points included in a region. Thus, the
problem of locating regions of interest is formulated as finding
regions complying with y > yR or y < yR, where yR is a
user defined threshold. Given this constraint an optimization
problem is introduced which yields multimodal solution space.
SuRF leverages the Glowworm Swarm Optimization built for
this class of optimization problems. SuRF also leverages ML
models to approximate functions for predicting statistic y over
interesting regions. Therefore, by resorting to these algorithms,
SuRF locates regions of interest 150x faster than the best
competitor and more than 3 orders of magnitude than the
worse, with minimal impact in accuracy. To our knowledge,
the problem of finding interesting regions by fusing multi-
modal optimization with ML has not been investigated before.
SuRF is a promising approach in solving a laborious and often
manual mining task.
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